in explaining changes in stability and color of the amylose-iodine complex with changes in amylose chain length is pointed out, and some application of the proposal is made to other blue iodine complexes.

Ames, Iowa

RECEIVED SEPTEMBER 18, 1944

[Contribution from the William G. Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology]

Thermal Data. XVIII. The Heat Capacity, Heat of Fusion, Entropy and Free Energy of Ethylbenzene

BY GEORGE B. GUTHRIE, JR., RALPH W. SPITZER AND HUGH M. HUFFMAN¹

Some time ago this Laboratory began a research program involving the study of certain thermal properties of hydrocarbons. Because of the importance of ethylbenzene in hydrocarbon chemistry a study was made of its low temperature thermal properties. In this paper we present the results of this investigation. These data have been utilized to calculate the entropy and free energy of liquid ethylbenzene at 298.16°K.

The Ethylbenzene.—The material used in this investigation was supplied to us in the purified condition by the Shell Development Co. An estimate of the liquid soluble-solid insoluble impurity was made from data obtained by observing the equilibrium temperatures corresponding to known fractions of the material in the solid and liquid form. The impurity estimated from the above data was 0.070 mole per cent.

Experimental.-The experimental method has been described in a recent paper by Ruehrwein and Huffman² and only a brief description need be given here. An adiabatic calorimetric system was used in which the material under investigation was contained in a sealed copper calorimeter. A measured quantity of electrical energy was supplied to the calorimeter and at all times during the measurements the temperature of the environment was maintained at that of the calorimeter to prevent heat interchange. The initial and final temperatures of the calorimeter were measured by means of a platinum resistance thermometer. The electrical measurements required for the determination of the energy and of the resistance of the thermometer were made on a White double potentiometer in conjunction with a high sensitivity galvanometer and accurately calibrated resistances. The precision of our measurements is in general better than 0.1% and we believe that above 30°K. the accuracy should be about the same as the precision. The energy measurements were made in terms of the international joule and were converted to the conventional calorie by dividing by 4.1833.

The ethylbenzene was distilled into the calorimeter in an air-free system. The gas space was filled with helium at one atmosphere pressure at room temperature and the calorimeter was then sealed by the application of a drop of soft solder.

The results of the heat capacity measurements are given in Table I. Most of the temperature range was covered at least twice and the results of the measurements in the different series were in excellent agreement. In Table II we have listed the values of the heat capacity at integral temperatures as selected from a smooth curve through all of the data.

MOLAL HEAT CAPACITY OF ETHYLBENZENE Molecular weight = 106.160; 0° C. = 273.16° K.

Тм.	А Т	Cp		A T	cal./de-
м.	0	-	100 42	6 00 E	17 000
10 04		S 1 019	109.43	0.230	10 604
10.04	1,301	1.013	110.01	10.808	18.004
15.01	1.973	1.380	110.53	7.950	18.749
16.91	1.831	1.846	126.79	12.578	19.859
19.72	4.067	2.585	133.33	19.762	20.629
19.84	4.030	2.638	138.98	11.814	21.222
23.90	4.098	3.809	150.47	11.167	22.482
24.09	4.676	3.859	154.21	22.013	22.952
27.99	4.080	4.965	160.62	9.130	23.677
28.40	3.946	5.086	166.84	3.244	24.622°
32.28	4.493	6.150	170.04	3.158	25.464^{a}
32.97	5.186	6.333	173.13	3.022	26.926°
37.07	5.085	7.374		Liquid	
38.59	4.217	7.728	181.51	9.249	37.648
42.06	4.889	8.513	190.70	9.152	37.936
46.39	9.538	9.375	199.81	9.056	38.257
47.14	5.288	9.524	208.81	8.954	38.626
52.28	4.994	10.480	216.27	9.601	38.982
55.96	9.605	11.120	218.15	9.733	39.048
57.76	5.971	11.436	221.14	17.426	39.211
62.40	3.916	12.177	225.80	9.473	39.446
63.91	6.284	12.410	234.98	10.249	39.989
66.21	3.696	12.755	244.70	10.074	40.532
71.14	6.165	13.445	255.52	11.553	41.246
77.09	5.741	14.272	266.96	11.346	42.016
83.19	6.452	15.028	277.41	9.556	42.787
89.95	7.063	15.874	286.89	9.406	43.504
96.82	6.692	16.617	296.23	9.254	44.275
103.37	6.413	17.318	305.41	9.113	44.994
103.43	5.766	17.320			

^a These values include premelting.

The Melting Point.—In Table III we have given the equilibrium temperatures corresponding to the known fraction of calorimeter contents in the liquid state.³ Utilizing these data we have calculated the melting point of the mixture in the calorimeter and also for pure ethylbenzene. The values of the melting point given in the last column of Table III were calculated, by an approximate method, on basis of an impurity of 0.070 mole per cent. From these data we conclude that the melting point

⁽¹⁾ Present address, Bureau of Mines, Bartlesville, Oklahoma.

⁽²⁾ Ruehrwein and Huffman, THIS JOURNAL, 65, 1620 (1943).

⁽³⁾ The value given as per cent. liquid is actually the per cent. of the calculated heat of fusion of the contents of the calorimeter but for practical purposes this may be taken as representing the per cent. of the ethylbenzene in the liquid form.

TABLE II

MOLAL HEAT CAPACITY OF ETHYLBENZENE AT INTEGRAL TEMPERATURES

<i>т</i> .°к.	Cp. cal./degree	<i>т</i> .° к .	Cp. cal./degree
Cry	stals	130	20. 23
13	0.94	140	21.34
15	1.39	150	22.47
2 0	2.68	160	23 .61
25	4.12	170	24.75
3 0	5.53	175	25.32ª
35	6.85	Li	quid
40	8.06	180	37.61
45	9.11	190	37.91
50	10.06	200	38.26
55	10.96	210	38.68
60	11.80	220	39.16
65	12.57	230	39.68
70	13.30	240	40.25
75	13.99	250	40.88
80	14.64	260	41.54
85	15.26	270	42.24
90	15.86	280	42.98
100	16.96	290	43.76
110	18.04	300	44.56
120	19.14		

^a Extrapolated.

of pure ethylbenzene is 178.17 ± 0.03 °K. We wish to point out that the observed value for the melting point when 5.7% of the ethylbenzene was liquid is not in agreement with the calculated value. This may be taken as indicating a deviation from the laws of the ideal dilute solution.

TABLE III

MELTING POINT SUMMARY

% Melted	Obs. m. p., °K.	M. p., °C. (calcd.) ^a
5.7	177.880	177.814
25.0	178.090	178.090
45.4	178.122	178.124
75.5	178.142	178.142
93.5	178.147	178.147
100.0	(178.149)	178.149
Pure	$178.169 \pm 0.03^{\circ}$	

^a These values calculated on the basis that the solid insoluble-liquid soluble impurity is 0.070 mole per cent.

We have also determined the heat of fusion of ethylbenzene and the results of two determinations of this quantity are given in Table IV. It is to be noted that this quantity is somewhat arbitrary since it is impossible to uniquely

TABLE IV

	FUSION DATA SUMMARY	
Fusion	Cal./mole	Dev.
1	2189.1	-1.2
2	2191.5	+1.2
Mean	2190.3	

determine the true heat capacity curve in the region below the melting point. This uncertainty in the heat of fusion will have only a minor effect on the entropy calculated from these data.

We have also calculated the entropy of liquid ethylbenzene at 298.16°K. The results of these calculations are summarized in Table V. The entropy of ethylbenzene

TABLE V

THERMAL DATA FOR ETHYLBENZENE, SUMMARY ENTROPY

 $S(0-14^{\circ}) = 0.3984$ (Debye 6° freedom, $\theta = 128$)

 ΔS (14.0-178.17) = 27.604 graphical

 ΔS (fusion, 178, 17) = 12.293

 ΔS (178, 17–298, 16) = 20,654

S (Liquid 298.16) = 60.95 = 0.10 cal. degree⁻¹ mole⁻¹

was also calculated by Huffman, Parks and Daniels⁴ from the results of their low temperature measurements which extended only down to 90 °K. They obtained a value of 61.2 E. U./mole in excellent agreement with our more accurate value of 60.95 E. U./mole. Prosen and Rossini have recently determined the heat of combustion of ethylbenzene and give the value $\Delta H_R^{\circ} = -1091.03$ kcal./mole.⁵ This datum has been utilized in conjunction with the entropy reported in this paper and other data to calculate the free energy of formation of liquid ethyl benzene. The data are summarized in Table VI. In

TABLE VI

THE MOLAL FREE ENERGY OF FORMATION OF LIQUID ETHYLBENZENE AT 298.16°K.

Heat of comb ΔH° , kcal.	ΔH_{i}^{θ} , kcal.	ΔS_{\star} cal./degree	ΔF_{f}^{0} . kcal.
-1091.03	-2.98	-106.08	28.65

making this calculation we have used the values 1.36⁴ and 31.23⁷ E. U. for the entropies of graphitic carbon and hydrogen gas, respectively, and the values 68318.1⁴ and 94,052⁹ calories for the molal heats of formation at 25° of liquid water and gaseous carbon dioxide, respectively.

In conclusion we wish to express our thanks to the Shell Development Co. for supplying the sample of ethylbenzene and also for financial assistance which made this investigation possible.

Summary

The heat capacity, heat of fusion and melting point of ethylbenzene have been measured.

The molal entropy and free energy of formation of liquid ethylbenzene at 298.16°K. have been calculated, S = 60.95 cal./degree and $\Delta F_f^0 = 28.65$ kcal.

BARTLESVILLE, OKLA. RECEIVED AUGUST 31, 1944

(4) Huffman, Parks and Daniels, THIS JOURNAL. 52, 1547 (1930).
(5) Prosen and Rossini, private communication, to be published in J. Research Nat. Bur. Standards.

(6) Jacobs and Parks, THIS JOURNAL, 56, 1513 (1934).

(7) Giauque, ibid., 52, 4816 (1930).

(8) F. D. Rossini, Bur. Standards J. Research, 22, 407 (1939).

(9) Prosen and Jessup and Rossini, private communication, to be published in J. Research Nail. Bur. Standards.